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Abstract:

The increase in the frequency and severity of environmental stresses, such as
drought, salinity, high and low temperatures, and metal pollution, is one of the
most critical challenges in contemporary agriculture, seriously threatening crop
productivity and global food security. Traditional plant breeding methods have
limitations in responding to current needs due to the complexity of resistance-
related traits and their strong influence on environmental factors. In this regard,
modern biotechnologies have been introduced as accurate and efficient tools to
identify, modify, and enhance physiological and molecular resistance pathways
in plants. Among these technologies, genome editing with systems such as
CRISPR/Cas9, gene transfer and production of transgenic plants, marker-
assisted selection (MAS), and omics technologies (genomics, transcriptomics,
proteomics, and metabolomics) play a prominent role in identifying genes and
regulatory pathways related to stress tolerance. Also, microbial biotechnology
through symbiosis with beneficial bacteria and fungi, nanotechnology with
controlled release of enhancers, and induced mutagenesis with gamma rays and
plasma have provided new perspectives for improving plant adaptation to
adverse conditions. Despite these advances, challenges such as high cost, the
need for specialized infrastructure, legal issues, and social acceptance still
hinder the widespread application of these technologies on a commercial scale.
Ultimately, the convergence of biotechnology with artificial intelligence and
bioinformatics systems can pave the way for the development of intelligent and

climate-adapted plants of the future.
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